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We calculate the modification of the local electronic structure caused by a single local impurity on the
surface of a three-dimensional topological insulator. We find that the local density of states around the Dirac
point of the electronic spectrum at the surface is significantly disrupted near the impurity by the creation of
low-energy resonance state�s�—however, this is not sufficient to �locally� destroy the Dirac point. We also
calculate the nontrivial spin textures created near the magnetic impurities and discover anisotropic Ruderman-
Kittel-Kasuya-Yosida �RKKY� coupling between them.

DOI: 10.1103/PhysRevB.81.233405 PACS number�s�: 72.25.Dc, 73.20.�r, 75.30.Hx, 85.75.�d

Introduction. The Dirac spectrum of chiral excitations are
realized in a wide range of materials including d-wave
superconductors,1 graphene,2 semiconductors,3 and super-
fluid 3He-A.4 The Dirac spectrum brings in substantial simi-
larities in electronic properties—like response to defects as
well as low-energy and low temperature properties. It is thus
natural to combine these materials into a category of “Dirac
materials.” A recent exciting realization of the Dirac spec-
trum is on the surface of three-dimensional �3D� strong to-
pological insulators �STI�.5–7 These materials have an un-
gapped spectrum at the surface while being fully gapped in
the bulk. In addition, STIs are unique because the topology
of their bulk band structure constrains their surface states to
possess an odd number of Dirac nodes.8,9 Suppressed back-
scattering inside the odd Dirac cone guarantees that the Dirac
dispersion remain essentially unperturbed for any perturba-
tion to the Hamiltonian that preserves time reversal symme-
try. This is a manifestation of the topological protection en-
joyed by this kind of surface band crossing and makes these
materials an attractive candidate for spintronics
applications10 as well as a possible platform for topological
quantum computation.11 In this context an important issue is
the stability of the STI surface nodes to the presence of
impurities.9,12,13 We contribute to this discussion by looking
at the modification of surface states around a single local
potential/magnetic impurity and calculate the change in the
local density of states �LDOS� as well as the spin density
near the impurity site. These quantities should be accessible
by STM measurements. We find the following.

�i� There is substantial modification of the LDOS near the
impurity site for both the nonmagnetic �time reversal pre-
serving� and magnetic impurities �time reversal breaking�,
especially when impurity scattering is strong �unitary�. Near
the potential/magnetic impurity, a single/a pair of low-energy
resonances form near the Dirac point �Figs. 1 and 2�. These
become very sharp and their energies �→0 as the impurity
strength �3� �U�→�:

��� �
5 sgn�U�
�U�ln�U�

. �1�

The scalar impurity resonance is doubly degenerate due to
Kramers’ theorem.1,14,15 The magnetic impurity breaks time

reversal symmetry and splits the low-energy impurity reso-
nance into two spin-polarized resonances on either side of
the Dirac point �Fig. 1�.

�ii� Modification of the LDOS vanishes quickly for ener-
gies less in magnitude than the resonance energy �approach-
ing the Dirac point� for both magnetic and nonmagnetic im-
purities. Thus, modifications to the low-energy LDOS does
not provide us with a signature of any incipient gap in the
spectrum for both potential and magnetic impurities. For r
�1 /�, these decay as 1 /r2.

�iii� In addition to LDOS modifications, magnetic scatter-
ing produces nontrivial spin textures near the impurity site
�Fig. 3� that can be imaged with a magnetic force microscope
or spin-resolved STM. These nontrivial spin textures lead to
the propagation of unconventional antiferromagnetic �AF�
RKKY coupling between magnetic impurities, when they are
polarized along the line joining them and when the chemical
potential is close to the Dirac point. When the spins are
perpendicular to the line joining them, they interact strongly
and ferromagnetically �FM�. The Dzyaloshinskii-Moriya
�DM� interaction between the spins16 vanishes at the Dirac
point. We thus conclude that random magnetic impurities
will tend to align parallel to the normal to the STI surface.

Theory. We will model the STI surface states as a single
species of noninteracting two-dimensional �2D� Dirac
quasiparticles17 with a high energy band cutoff W. We shall
work in units of W, �, and vF �the Fermi velocity�. The
Hamiltonian becomes

H0 = � · p , �2�

where � /2 is the actual spin of the electron �or related by a
rotation about ẑ�. We shall consider local impurities of the
potential and classical types, respectively,

V̂pot = UI��r̂�, V̂mag = US · ���r̂� . �3�

For the magnetic case we have assumed a local Heisenberg
exchange J between the band electrons and the impurity spin
S, whose direction is given by the unit vector S. Thus, U

=JS /2 in V̂mag.
To address the effect of impurity scattering we use the

T-matrix technique.1 The T-matrix is defined via
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T̂��� = V̂ + V̂Ĝ0
ret���T̂��� , �4�

where G0
ret is the retarded Green’s function for the impurity-

free material and � is the energy. For ��1 and 	�1 /W
���r−r��, it has the following form:

�r�G0
ret����r�� =

���
4

�f0��,	�I + f1��,	��� · �̂�	 , �5�

where

f0��,	� = s���Y0 − iJ0
, f1��,	� = iY1 + s���J1
 �6�

and ���	 is the argument of the Bessel functions J0/1 and Y0/1.
Also, s� · ��sgn� · � and 
���1− ����. We shall also require
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FIG. 1. �Color online� LDOS plots showing the low-energy resonance�s� near �a� the scalar/potential impurity, �b� the z-polarized and
�C,D� the x-polarized magnetic impurities. �c� and �d� show the x-spin projected LDOS, at a point on the x and y axis, respectively. Note
from �c� that on the x axis, the negative energy states have excess states with spins parallel to the x-polarized impurity. In all these cases,
U=100, r=20. In the system of units used above, �, vF, and W are unity.

FIG. 2. �Color online� Low-energy LDOS near the �a� scalar
impurity and �b� the x-polarized magnetic impurity for U=80. �, v,
and W have been set to unity.

FIG. 3. �Color online� Spin textures near spin impurities �U
=80, E=�=−0.014� when the impurity is �a� z polarized and when
it is �b� x polarized �solid green arrows�. The component in the xy
plane is denoted by a vector while the background shade gives the
sign of sz�r ,E� �clear�positive�. The arrows are normalized to the
longest field-of-view total spin length in �a� and xy spin length in
�b�, indicating respectively the sign of the z polarization and the
anisotropic x polarization around the impurities in accordance with
Eq. �15� �these mediate anisotropic RKKY interactions between
two impurity spins�.
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the unperturbed on-site Green’s function valid for short dis-
tances �1,

G0��� � �0�G0
ret����0� = − �g0��� + ig1����I, where

g0��� =
�

4
ln
 1

�2 − 1
, g1��� =
���
4

��1 − ���� . �7�

In Eq. �3�, we have used a local form for the impurity po-

tential �r�V̂�r��=V��r���r��, where V is a 2�2 matrix in

spin-space. The T-matrix also becomes �r�T̂�r��=T��r���r��,
with T satisfying the following equation:

T = V + VG0T = �I − VG0�−1V . �8�

From the algebraic relations involving Eqs. �3�, �7�, and �8�,
we analytically calculate the T matrix, the full Green’s func-

tion Ĝret,

Ĝret��� = Ĝ0
ret��� + Ĝ0

ret���T̂���Ĝ0
ret��� �9�

the full �spin-unresolved� LDOS,

	�r,�� = −
1


Im Tr�r�Ĝret����r� , �10�

the local density of spin up/down states �in direction ��,

	�
� �r,�� = −

1


Im Tr�r�Ĝret����1 � ��

2
��r� �11�

and the energy-resolved spin density averages,

s�r,�� = −
1


Im Tr�r�Ĝret���

�

2
�r� . �12�

Results. For the scalar and magnetic impurity cases, we
find that the additional GTG��G pieces in the Green’s func-
tion �9� evaluate, respectively, to �using g�g1+ ig2�

�Gpot =
U�2

16

f0
2 − f1

2

1 + Ug
�13�

and

�Gmag =
U�2

16�1 − U2g2�
�− 2if0f1� · �S � r̂� + �f0

2 + f1
2�� · S

− 2f1
2�� · r̂��S · r̂� − Ug�f0

2 − f1
2�	 . �14�

As shown in Figs. 1 and 2, for both the magnetic and non-
magnetic cases we obtain low-energy resonance�s� in the
LDOS �arising from the minima of the denominators in Eqs.
�13� and �14�	 that approach the Dirac point for large impu-
rity strengths according to Eq. �1�.1,14 These resonances be-
come sharper as they approach the Dirac point with increas-
ing potential strength and while doing so, also increase in
amplitude relative to the unperturbed LDOS. For r�1 /�
and ��1, the strength of LDOS modulations diminish with
distance as 1 /r2.18

Topological stability of the surface Dirac spectrum in TIs
is often discussed as a crucial property of these materials. An
important question in this context is whether the appearance
of these low-energy resonances is related to the local cre-

ation of a gap at/destruction of the Dirac point. Naïve scaling
analysis tells us that the potential strength U has a dimension
of −1 �same as length� near the fixed point corresponding to
Eq. �2�. As we approach the Dirac point, we should thus see
the effects of the impurity become negligible. Indeed, we
find that if we move from the resonances to the Dirac point,
the density of states gradually settles down to the impurity-
free value. We cannot, therefore, find signatures of gap-
opening at the Dirac point at the stage of one-impurity scat-
tering. We also note here that the appearance of these
resonances at the Dirac point is a consequence of the band
cutoff being symmetric on the particle and hole sides—in
realistic materials5 the band structure is asymmetric and de-
pending on the degree of asymmetry, these resonances may
appear at other region�s� of the bands.1

In addition to the impurity resonances at small energy we
find new states that lie outside the effective band edges—a
consequence of using a hard cutoff. These true bound/
antibound states are located at the positive/negative side for
positive/negative sign of a scalar impurity potential U. For a
magnetic impurity they are located on both sides outside the
effective band edges. For large �U�, these are located approxi-
mately at a distance U from the Dirac point, while as �U�
→0 they approach the band edge as e−4/�U�. In real STI SSs,
these may well be located at the same energy as the bulk
bands, will hybridize with them and delocalize into the bulk.

Near a magnetic impurity, entanglement of the electron
spin and momentum lead to the creation of spin textures, as
shown in Fig. 3. The energy-resolved spin average is found
to be

s�r,�� = U�2 Im�2if0f1S � r̂ − �f0
2 + f1

2�S + 2f1
2r̂�S · r̂�

16�1 − U2g2�
� .

�15�

The first term in Eq. �15� gives rise to a DM interaction
between two impurity spins. When the chemical potential �
is at the Dirac point, considering only the perturbative result
�obtained cheaply by putting g→0 in the above expression�,
the strength of this interaction becomes zero


−�

0

Re�f0f1��2d� � −
1

r3
0

� d

dx
�J0Y0���r − x�x2dx �

r�1

0.

�16�

For a finite chemical potential ����1, the amplitude of the
DM interaction becomes

U

8


−�

�

Re�f0f1��2d� =
U sgn �

8


0

���

Re�f0f1��2d�

=
U����J1����r�Y1����r�

8r
. �17�

At large distances, the amplitude of this interaction decays as
�U� /r2.

The second term in Eq. �15� leads to FM RKKY interac-
tions when �=0, in the perturbative approximation. The cor-
responding spin component is
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−
US

16


−�

0

Im�f0
2 + f1

2��2d� = −
U

32r3S. �18�

Finally, the third term in Eq. �15� leads to AF RKKY inter-
action between impurity spin components pointing along the
line joining the impurities, when �=0. In the perturbative
limit, the corresponding induced spin component is

Ur̂�S · r̂�
8


−�

0

Im�f1
2��2d� =

3U

64r3 r̂�S · r̂� . �19�

From these two expressions we calculate that at �=0 the
interaction energy between two impurity spins S1,2,

�E12�r21��=0 = �US1 · s1 + US2 · s2�cross terms

=
U2

16r3�− S1 · S2 +
3

2
�S1 · r21̂��S2 · r21̂�� + O�U4�

�20�

is minimized when they are aligned parallel to each other and
perpendicular to the line joining them. Thus, when many
impurities are present �and �=0�, they will tend to point in
the common direction where all gain the FM interaction
energy—along the z direction, normal to the surface. This
kind of FM ordering will be conducive to opening a gap in
the STI surface state spectrum. Also, we note here that this
state does not arise due to the spontaneous breaking of a
continuous symmetry and hence is not forbidden by the
Mermin-Wagner theorem.19

We would like to note here that the foregoing results are
not obvious when observing the energy-resolved spin densi-
ties at low energies �→0−, because of the low density of
states there. Naïvely, one would have expected the low-
energy long wavelength features to determine the r→� spin
textures, but the low-energy spin textures predict, incorrectly,
antiferromagnetic RKKY interactions with short distance fer-

romagnetic contributions arising from nonperturbative ef-
fects. We would also like to note here that we assumed a
smooth cutoff when adding up the spin textures at different
energies to eliminate cutoff-dependence.20 We have used
multiplicative functions like e−���� and �1−e−��2

� / ���2�
�having different characters as ���→�� in the energy inte-
grals and then taken the limit �→0+—both these procedures
gave the same limit.22

When we consider the full nonperturbative spin average
obtained by integrating �Eq. �15�	 numerically, the aforemen-
tioned behaviors seems to hold qualitatively if we look be-
yond the “ringing” introduced by a sharp cutoff.

Conclusion. In summary, we find that local impurities can
strongly disrupt the structure near the Dirac node of 2D sur-
face states in 3D topological insulators by forming low-
energy resonance�s�. However, in the asymptotic approach to
the Dirac point, the linear DOS is preserved, consistent with
the negative scaling dimension of the impurity strength.
Thus, the gap-opening mechanism for magnetic impurities is
not evident at this stage of analysis. We also find that the
induction of nontrivial spin textures near magnetic impurities
leads to the mediation of antiferromagnetic RKKY coupling
between impurity spin components parallel to the lines join-
ing them, especially if the chemical potential is at the Dirac
point �in which case the interaction does not oscillate in
sign�. The spin components perpendicular to the line joining
the impurities, however, exhibit strong FM interaction.
While there is, in general, a DM component in the spin in-
teractions, it vanishes at the Dirac point.
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